012345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505160616263646566676869707172737475767778798081828384858687888990919293949596979899100=2+0−log2(4)=(2+0)⋅2/4=2/(0!/2)/4=2⋅0+log2(4)=(2+0!)!/log2(4)=2+0−2+4=(2+0!)2−4=20/2−4=2+0+2/.4=2+0!+2/.4=2+0!+2+4=(2+0!)log2(4)=.2⋅sin−1(0!)⋅2/4=(2+0!)⋅2+4=2⋅(0+2/.4)=(2+0!)!+2/.4=2(0!+2)+4=(2+0!)2+4=20/2+4=20−2/.4=2/(0!/2)⋅4=20+24=−(2⋅(0!+2))+4!=(2+0!)⋅(2+4)=−2−0!−2+4!=(2+0!+2)⋅4=((2+0!)!+2)/.4=20+2/4=20+2⋅4=−20+24=(2+0!)⋅2⋅4=nPr(2+0!,2)⋅4=2/.02/4=20+2/.4=20/2/.4=2+0+24=2+0!+24=2+0+2+4!=2+0!+2⋅4!=(2+0!)⋅2+4!=(2+0!)!⋅2/.4==2(0!−2+4)=((2+0!)!+2)⋅4=nPr((2+0!)!,2)+4=.2⋅sin−1(0!)/2+4!=20/2+4!=nPr((2+0!)!,2)+4==20⋅2−4=(2+0!)2⋅4=(2+0!)!⋅(2+4)=2⋅sin−1(0!)/(2/.4)==(2+0!)!2+4=−2+sin−1(0!)/2−4=20/2⋅4=sin−1(20)/2−4=20−2+4!=(2+sin−1(0!))/2−4=2+sin−1(0!)/2−4=20⋅2+4=2⋅sin−1(0!)/2/4=20+2+4!=−2+sin−1(0!)/2+4=(2+0!)!⋅2⋅4=20+2⋅4!=sin−1(20)/2+4=(2+sin−1(0!))/2+4=2+sin−1(0!)/2+4=2+0!+2⋅4!=(2+0+2)!/.4=2((2+0!)!)−4=.2⋅sin−1(0!)⋅2+4!=nCr((2+0!)!,2)⋅4=(2+0!+2)!/4==−2+sin−1(0!)−24==2(0+2+4)=20⋅2+4!==2+sin−1(0!)−24=−2+sin−1(0!)/2+4!=2((0!+2)!)+4=sin−1(20)/2+4!=(2+sin−1(0!))/2+4!=−2⋅+sin−1(0!)⋅2⋅.4=2+sin−1(0!)/2+4!=(2+0!)⋅24=−2+sin−1(0!)−24=.2⋅sin−1(0!)⋅2⋅4=nPr((2+0!)2,4)==2+sin−1(0!)⋅2⋅.4==2+sin−1(0!)−24====20⋅2⋅4=(2−0!+2)4=−2+sin−1(0!)−2−4=2⋅(sin−1(0!)/2−4)=−2+sin−1(0!)−2/.4=−2+sin−1(0!)−2⋅4=sin−1(20)−2/.4=2+sin−1(0!)−2−4=2+sin−1(0!)−2/.4=2+sin−1(0!)−2−4=2((0!+2)!)+4!=−2+sin−1(0!)+2/4=.2⋅sin−1(0!)⋅2/.4=(2+0!)!!/2/4=2+sin−1(0!)−2/4=2+sin−1(0!)−2+4=−2+sin−1(0!)+2/.4=2+sin−1(0!)+(2⋅4)=nPr(20,2)/4=2/.02−4=(2+0!+2)!−4!=2+sin−1(0!)+2/.4=2+sin−1(0!)+2+4=2⋅(sin−1(0!)/2+4)=2⋅(0!+2⋅4!)==20⋅2/.4=−20+(2/.4)!=202/4=−20+(2/.4)!